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SUMMARY 

The finite difference scheme developed by Liu et al. for the Newtonian jet swell problem has been improved: 
an algebraic approach has been adopted for the numerical mapping; a new formulation for free surface 
iteration has been proposed; the discrete flow equations have been solved by a combination of the successive 
line underrelaxation method and the Picard method. With these modifications we are capable of achieving 
more accurate numerical solutions and a substantial saving in computing time. 
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INTRODUCTION 

Recently Liu et al.’ solved the Newtonian jet swell problem with a numerical mapping technique 
called the boundary-fitted co-ordinate transformation method (BFCTM).’v3 In this paper we 
shall discuss an improved finite difference technique for the method previously developed by Liu 
et al. Instead of solving the partial differential equations for mapping, we have taken an algebraic 
approach to complete the mapping procedure. We have also modified the mathematical formula- 
tion for locating the free surface. After the flow equations have been discretized by standard 
central difference formulae, the resulting finite difference equations can be solved iteratively by a 
combination of the successive line underrelaxation method and the Picard method. With these 
modifications we can obtain more accurate numerical solutions and a substantial amount of 
computing time can be saved. 

The flow geometry of the Newtonian jet is shown in Figure l(a). The mathematical formulation 
of the jet swell problem is the same as in the work of Liu et al., except that we reformulate the 
tangential stress boundary condition (TSBC) on the free surface as 
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This equation is used to compute the vorticity on the free surface. 
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CO-ORDINATE TRANSFORMATION 

We use the BFCTM to transform the flow geometry in Figure l(a) onto the regular domain in 
Figure l(b). Liu et al.' solved the mapping equations numerically, but since the flow geometry is 
not complex, we propose to use an algebraic approach for mapping here. The mapping equations 
can be rearranged as 

P( t ,  l l )  = (:; --fa - --f* ) / J ' ,  
all 
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Figure 1. Flow geometry in (a) physical plane and (b) transformed plane 
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J being the Jacobian of the transformation. P( t ,  q )  and Q ( t ,  q) are forcing functions used to 
regulate the mesh intervals. 

After imposing the Dirichlet boundary conditions, we can set up an internal grid distribution in 
the physical plane by hand, by a digitizer or by a simple algebraic function such as a polynomial, 
and the correspondence between the (x, y)-plane and the (t, ?)-plane can be easily found. The 
first and second derivatives on the right-hand sides of (2) and (3) can also be easily approximated 
by standard finite difference schemes4 By doing so, the forcing functions P and Q which can be 
assigned arbitrarily now serve as the 'residuals' of the manually set mapping. It is obvious that 
since the mapping equations need not be solved numerically, a significant amount of computing 
time can be saved. 

The three conditions for the jet free surface should also be transformed and the kinematic 
condition becomes' 

The tangential stress boundary condition (1) is used to generate the vorticity on the free surface. 
The terms a'cplaxay and a2cp/dx2 in (1) can be expressed as functions of 5 and q.5 The stress 
boundary conditions' are rearranged and used to update u and v on the jet free surface: 

(i) the tangential stress boundary condition (TSBC) 

(ii) the normal stress boundary condition (NSBC) 

NUMERICAL PROCEDURE 

It takes three steps to solve the jet swell problem. 

(1 )  Mapping 
In the present analysis we do not solve the mapping equations numerically as in the previous 

work;' instead we select an interpolation function to represent the distribution of the internal grid 
points in the physical plane. It is important to select an interpolation function such that the 
numerical errors which come from the skewness of grid lines are avoided. We apply an even mesh 
in the y-direction. For the x-direction we apply an even mesh if x < 0, while a quadratic function is 
chosen for x > 0 

Three conditions are needed to determine the parameters in (10): 

x = c1+ c 2 t  + c3t2. (10) 

0) t = Me, x = 0 (slot exit), 
(ii) t = M ,  x = L,, 

(iii) 5 = M e ,  axlag =f,, 
wheref, is the even mesh size for x<O. The third condition is used to keep a smooth variation 
from upstream to downstream. The three parameters c i ,  c, and c3 can be found from (11). 
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After determining the derivatives of x and y by second-order difference approximations: the 
coefficients a, p. y and J and the forcing functions P and Q can be estimated by using (2)-(6); these 
values together with the first derivatives of x and y will be needed later. 

(11) Solution of theflow equations 

The procedure for solving the flow equations is the same as in the previous study of Liu et al.' 
The successive line underrelaxation (SLUR) method was applied to solve the finite difference 
equations previously; however, as one of the reviewers suggested, the SLUR method can be 
combined with the Picard method to reduce the computing time. We found this combination 
could be quite effective if we started the iteration with the SLUR method and switched to the 
Picard method if the maximum error of vorticity was smaller than a preset tolerance. 

The vorticities on the wall and along the jet free surface are unknown and need to be 
determined iteratively. Several finite difference approximations on vorticity were discussed by 
Roache.6 We tested one first-order and two second-order schemes suggested by Roache and also 
the scheme proposed by Dorodnitsyn and Meller,' but found that all these formulae could 
generate convergent solutions and the values of vorticity on the wall computed by these schemes 
were almost identical. Therefore using different schemes to compute the vorticity on the wall has 
little effect on the convergence and numerical accuracy of the solution. 

The vorticity o, on the free surface can be approximated immediately from (1). It is important 
to note that w, is estimated directly from the TSBC in the present approach, whereas o, was 
approximated using u and u that were computed based on values of cp in the previous study.' This 
modification turns out to be quite efficient in free surface iteration. 

We took the same approach as Liu et al. to determine the pressure; however, we have found 
that the pressure term is critical for generating convergent solutions as Re increases. If the newly 
generated pressure replaces the current one in the NSBC (9), it will cause serious numerical 
oscillations on free surface iteration for high Re. The oscillations can be eliminated if we update 
the pressure as 

where pold is the current value, p' is obtained by integrating the pressure gradient equation and 
p"'" is the new value to replace pold; k is an adjustable parameter varying between zero and unity 
and has to be smaller as Re increases. 

(12) p""" = p l d  + - p), 

(111) Updating the free surface 

We still adopt the method of Liu et al. for the free surface iteration. However, the TSBC and 
NSBC are modified as shown in (8) and (9). Comparing with the formulae used by Liu et al. 
previously, we have eliminated au/aq  from (8) and au/aq from (9). Since estimating and 
au/aq may require many terms far down the jet free surface, eliminating these two terms can 
generate more accurate solutions. We take the same approach as Liu et al. to update the free 
surface, i.e. the new values of u and u on the free surface are generated and the kinematic condition 
(7) is used to determine a new position of the free surface. An adjustable parameter k is needed for 
updating the free surface; we take the same adjustable parameter k for pressure and free surface 
position for convenience. 

RESULTS AND DISCUSSION 

We selected the same test case as Liu et al., i.e. the swelling of a creeping Newtonian jet with 
Ca = 1O00, and compare the computational efficiency of the present scheme with the work of Liu 
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et al. The computations were performed on a CDC Cyber 180/840 machine and the tolerance of 
convergence was chosen to be 1.0 x for all cases. 

If the SLUR method was applied to solve the flow equations, 69.1 CPU seconds were required 
to generate the convergent solution; however, it took 113.2 CPU seconds for Liu et al. to obtain 
the same solution. 

Since the initial guesses on rp, w and H ( x )  were given arbitrarily, starting the iteration with the 
Picard method could not lead to a convergent solution. Instead, the Picard method could be used 
after the SLUR method was applied and the error of w was reduced to a preset tolerance. 

The SLUR method was first applied until the maximum difference between the previous and 
current values of w was less than 0.1; then H was updated and the maximum difference between 
the previous and current H was computed. The Picard method was now introduced to compute w 
and cp and these were iterated several times until the maximum difference of w was smaller than 
the maximum difference of H; then H was updated again. This procedure was repeated until H 
converged. With this new approach the computing time required was reduced to 39.0 CPU 
seconds. 

The jet free surface of the present simulation for the creeping Newtonian jet is much closer to 
the predictions based on the finite element method*-" than the previous finite difference studies. 
The jet swell ratio based on the present simulation is 1.182, whereas this value was found to be 
1.186 by Georgiou et a1.' 

The present study, just as the previous case,' fails to predict the variations of free surface 
position for the case Re> 100. With Re> 100 the NSBC (9) can only generate a u that is almost 
identical to the current value; therefore the position of the free surface freezes for the case 
Re > 100. 

A comparison of the jet swell ratio with previous works is given in Figure 2. The jet swell ratio 
C, predicted by the present method for Re = 100 is 0-836, which is close to the value of 0833 for 
the potential jet. It is clear that modifying w, can generate numerical results that are closer to the 
predictions based on the finite element methods than previous finite difference studies. 

- Georgiou et 0 1 .  
. . . . . . . . . . . . Ruschok 

0 Dutto 8 Ryan 
Liu et ol. 
Present 

co 

-.-.-. . .- 
I I I 1 - r - 7  

0 10 20 30 40 50 60 70 80 90 

Re 

0 

Figure 2. Comparison of the jet swell ratio C, with previous studies 
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CONCLUSIONS 

We have improved the finite difference scheme developed by Liu et al. previously for the 
Newtonian jet swell problem. Three modifications have been made, i.e. an algebraic mapping has 
been adopted, a new formulation for free surface iteration has been proposed and the discrete flow 
equations can be solved iteratively by a combination of the successive line underrelaxation 
method and the Picard method. 

Since the flow geometry is not very complicated, a simple algebraic approach for numerical 
mapping is appropriate. There is no need to solve the mapping equations and consequently a 
substantial amount of computing time can be saved. 

We have reformulated the stress conditions on the jet free surface, and the vorticity on the free 
surface is generated from the tangential stress boundary condition. With ihese significant 
modifications we have found that more accurate numerical solutions can be obtained. The 
combination of the SLUR method and the Picard method can reduce the CPU time effectively. 
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APPENDIX NOTATION 

one-half of the exit slot gap 
capillary number, p ( u )/a 
jet swell ratio, 6/a 
constants, equation (10) 
constants, equations (4) and (5) 
mesh size upstream, equation (1 1) 
location of the free surface, dimensionless 
Jacobian of mapping equation, equation (6) 
adjustable parameter, equation (12) 
upstream length, dimensionless 
downstream length, dimensionless 
numbers of grid points in the transformed plane 
grid point at the slot exit in the transformed plane 
forcing functions for mapping, equations (2) and (3) 
fluid pressure, dimensionless 
dimensionless curvature of the jet surface 
Reynolds number, p ( u )  a l p  
velocity component in the x-direction, dimensionless 
average fluid speed upstream in the slot 
velocity component in the y-direction, dimensionless 
Cartesian co-ordinates, dimensionless 

Greek letters 

4 P? Y 
6 

coefficients of mapping equations, equation (1 3) 
one-half of the final jet thickness 
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fluid viscosity 
co-ordinates in the transformed plane 
fluid density 
surface tension coefficient 
streamfunction, dimensionless 
vorticity, dimensionless 
vorticity on the free surface 
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